10.1. Анализ дыхательных кривых.

Измерение давления датчиком, расположенным на уровне карины трахеи, позволяет изучать аэродинамику дыхательной системы без учета влияния интубационной или трахеостомической трубки. Весьма информативным является также мониторинг давления в нижней трети пищевода, позволяющий оценивать изменения плеврального давления.

Изучение абсолютных величин и синхронности изменений давления, измеренного в пищеводе (Pes), в трахее (Ptr) и возле Y–образного соединения у наружного конца интубационной трубки (Paw), а также колебаний дыхательного потока и объема позволяет решить ряд важных клинических задач. Задачи эти следующие.

10.1.1. Оценка соответствия работы респиратора потребностям больного

Оценка эффективности триггирования

Попытка спонтанного вдоха первой регистрируется на кривой пищеводного давления – первая временная точка (рис. 10.1). Затем отмечается снижение Paw (вторая временная точка) и только потом – изменение кривых потока и объема (третья временная точка). Время между первым и вторым событием, а также величина колебаний пищеводного давления прямо пропорциональны работе больного, затрачиваемой на преодоление внутреннего РЕЕР. Время между второй и третьей точкой зависит от быстроты отклика респиратора на дыхательную попытку.

Сравнительный анализ кривых Pes, Paw и потока позволяет также точно установить, сколько дыхательных попыток больного завершились подачей механического вдоха, а сколько «пропали даром» (рис. 10.2). Уменьшить число «пропавших» попыток можно разными способами. Самый простой подход – увеличить чувствительность триггера. Однако иногда возможны и нестандартные решения. Например, избыточная величина давления в режиме Pressure Support удлиняет механический вдох, что приводит к неэффективности следующей дыхательной попытки, наступающей слишком рано. В этой ситуации можно увеличить порог переключения с вдоха на выдох с 25 до 40-50%, а можно просто уменьшить величину давления поддержки (рис. 10.3). Также облегчают триггирование своевременная диагностика и компенсация внутреннего РЕЕР. Очевидно, что столь нестандартные решения можно принимать только на основе графического анализа.

Анализ кривых Pes, Paw и потока позволяет выявить такие причины аутоциклирования, как кардиогенные осцилляции и скопление избыточного количества секрета в контуре респиратора (рис. 10.4).

Подбор оптимального отношения вдоха к выдоху

Анализ кривой потока позволяет диагностировать незавершенность выдоха: кривая не возвращается к нулевой отметке. Следовательно, отношение вдоха к выдоху слишком велико. Иными словами, вдох слишком длинный, чтобы осталось время для выдоха. Описываемая ситуация приводит к развитию ауто-РЕЕР. График потока в этом случае напоминает таковой при аутоциклировании из-за утечек по контуру (рис. 10.5).

Длительность механического вдоха, не соответствующая потребностям больного, вызывает еще ряд проблем. Слишком большое установленное время вдоха приводит к тому, что больной пытается дышать самостоятельно во время незавершенного вдоха. При слишком коротком времени вдоха больной начинает вдыхать во время незавершенного выдоха (рис. 10.6).
Неоправданно короткое время вдоха может вызвать также двойное триггирование из-за продолжающейся инспираторной попытки в то время, когда респиратор окончил вдох и открыл экспираторный клапан (рис. 10.7).

Подбор скорости доставки вдоха, адекватной потребностям больного

При отсутствии графического монитора соответствие режима подачи механического вдоха и дыхательного паттерна больного оценивают путем простого наблюдения за пациентом. Скорость изменения пикового потока подбирают по комфортности ощущений больного и ритмичности его дыхания. Более тонкая регуляция возможна при графическом анализе кривых давления и потока. При проведении ИВЛ в режиме Volume Control оптимальной является такая скорость, которая обеспечивает практически вертикальный подъем кривой давления в дыхательных путях (рис. 10.8). При недостаточной скорости потока можно отметить изменение формы и наклона кривой давления. Угол между ней и горизонтальной осью становится острым. Кроме того, на ней появляются волны, соответствующие дополнительным дыхательным усилиям больного. При проведении вентиляции в режиме Pressure Control недостаточная скорость нарастания давления в дыхательных путях сопровождается направленным вверх изгибом кривой давления. При избыточной скорости на кривой давления появляются осцилляции (рис. 10.9). Оптимальная скорость нарастания давления сопровождается линейной формой восходящей части кривой и приводит к поступлению максимально возможного дыхательного объема для данного уровня давления и податливости легких. Более точная диагностика несоответствия скорости потока потребностям больного возможна при дополнительном анализе кривой давления в нижней трети пищевода, который демонстрирует значительное снижение уровня этого давления в начале вдоха.

Оценка достаточности создаваемого давления поддержки

Об оптимальности подбора параметров вентиляции в режиме Pressure Support свидетельствует косонисходящая форма кривой потока. Наличие на ней начального спайка, сопровождающегося одновременно регистрируемым спайком на кривой давления в дыхательных путях свидетельствует об избыточной величине скорости нарастания давления (рис. 10.10 а). Закругленная форма кривой потока обычно сопровождается повышением давления в конце вдоха (рис. 10.10 б). К таким характеристикам дыхательного цикла могут приводить три причины. Первая - слишком низкая скорость нарастания давления в дыхательных путях. Увеличение этой скорости позволяет справиться с проблемой. Вторая причина - значительные усилия мышц вдоха. Когда инспираторные мышцы наконец-то расслабляются, респиратор не успевает на это отреагировать, что приводит к избыточному повышению давления в дыхательных путях. Решить проблему в этом случае возможно также увеличением скорости нарастания давления или простым увеличением уровня поддержки. Третья причина обсуждаемого искажения формы кривых потока и давления – преждевременная активность мышц выдоха. В этом случае помогают все мероприятия, укорачивающие вдох: увеличение скорости создания давления в респираторной системе, уменьшение уровня поддержки и увеличение порога переключения с вдоха на выдох. Таким образом, во всех трех случаях есть только одно универсальное средство – ускорение инспираторного потока. Остальные способы могут быть диаметрально противоположными, поэтому их эффективность должна оцениваться каждый раз индивидуально при графическом анализе всех дыхательных кривых.

В ряде случаев полезным является синхронный мониторинг давления в пищеводе. Слишком высокая амплитуда волн пищеводного давления при вентиляции в режиме Pressure Support свидетельствует о значительных усилиях больного, затрачиваемых на работу дыхания (рис. 10.11. а). Увеличение поддержки позволяет решить эту проблему: амплитуда волн пищеводного давления снижается (рис. 10.11. б).

Диагностика нарушений экспираторного паттерна

Анализ кривой объема позволяет диагностировать несовпадение объемов вдыхаемого и выдыхаемого воздуха (рис. 10.12). В том случае, если объем вдоха больше объема выдоха, следует искать утечки в респираторной системе (сдутая манжета интубационной трубки, бронхоплевральная фистула) или задержку в легких воздуха вследствие ауто-РЕЕР. Больший объем воздуха на выдохе по сравнению с вдохом может регистрироваться при использовании небулайзера и режима TGI, а также в случае намеренного удлинения вдоха и «стравливания» воздуха, скопившегося в легких из-за дыхательной гиперинфляции.

Интересную информацию можно получить при анализе экспираторной части кривой потока (см. рис. 10.2). Начальный спайк на ней свидетельствует о значительном повышении сопротивления дыхательных путей и затруднениях для выдоха по типу экспираторного закрытия верхних дыхательных путей. Экспираторный поток «ударяется» о препятствие в виде сдавленной извне плевральным давлением неэластичной стенки дыхательных путей.

Искажение формы конечной части кривой экспираторного потока и значительное уменьшение его абсолютной величины – очевидный признак появления сокращения мышц вдоха. Сопоставление времени появления этих признаков на кривой потока со временем начала повышения давления в дыхательных путях позволяет судить о возможных затруднениях триггирования вдоха.

10.1.2. Раздельная оценка податливости легких и грудной клетки

При увеличении сопротивления дыхательных путей нарастает пиковое давление вдоха при неизменном давлении плато (рис. 10.13 б). При снижении податливости растет давление плато при неизменном пиковом давлении (рис.10.13 в, г). Отметим, что уточнение истинной причины нарушений податливости респираторной системы (жесткие легкие или грудная клетка) возможно только при дополнительном анализе кривой пищеводного давления.

При механическом вдохе величина вдыхаемого объема, деленная на значение амплитуды колебаний давления в пищеводе, отражает податливость легких. Отношение величины дыхательного объема к разнице давлений в дыхательных путях отражает общую податливость всей дыхательной системы (легкие плюс грудная клетка).

В норме общая податливость высока. Очевидно, что податливость легких в этом случае тоже высокая. Иными словами, величины Paw и Pes - небольшие и разница между ними невелика (рис. 10.13 а).

Если общая податливость дыхательной системы низкая, то для принятия корректных клинических решений необходимо оценить отдельно податливость легких. Если податливость легких тоже низкая, следовательно, больной имеет неподатливые легкие. Это означает, что вся энергия вдоха тратится на попытку их растянуть. Датчик, измеряющий Paw, покажет высокие значения. Пищеводный датчик, располагающийся между жесткими легкими и податливой грудной клеткой, покажет низкие значения Pes, и разница между Paw и Pes будет большой (рис. 10.13 в). Клиническое значение этого факта состоит в следующем: значительное повышение давления в дыхательных путях при вдохе, необходимое для введения объема воздуха в легкие, создает опасность баротравмы.

Если при общей высокой податливости дыхательной системы комплайнс легких – высокий, то это означает, что у больного нарушена растяжимость грудной клетки. Величины Paw и Pes – большие, однако разница между ними невелика (рис. 10.13 г). В этом случае повышенное давление в дыхательных путях не создает опасности баротравмы и отражает усилия респиратора по растяжению ригидной грудной клетки или по преодолению высокого внутрибрюшного давления.

10.1.3. Подбор оптимальной скорости пикового потока

Для подбора оптимальной скорости потока в режиме Pressure Support в качестве ориентира для раоты респиратора можно использовать давление не в дыхательном контуре, а в трахее. Для этого в трахею параллельно интубационной трубке вводят тонкий катетер. Учет давления в трахее при проведении Pressure Support позволяет преодолеть один из недостатков режима, связанный с нелинейностью потока через интубационную трубку: недостаточность поддержки в начале вдоха и ее избыточность в конце (рис. 10.14). Недостатком описанного подхода является маленький диаметр вводимого катетера, из-за чего он может быстро обтурироваться секретом.

Чувствительным индикатором несоответствия скорости потока механического вдоха потребностям больного служит совместный анализ кривых потока, объема, давления в дыхательных путях и пищеводного давления. При недостаточной скорости потока можно отметить значительную величину отрицательного пищеводного давления, а также искажение формы кривой давления в дыхательных путях (см. рис. 10.8).

В настоящее время большое внимание уделяется математическому описанию линейности нарастания кривой давления при подаче в легкие потока дыхательной смеси с низкой скоростью. Для этого введено понятие стресс-индекса (Ranieri V.M. et al., 2000). Рассчитывается он по следующей формуле:

ΔP = a х Δtb + c,

где ΔP – изменения давления вдоха,
Δt - время, в течение которого изменяется давление,
a, b, c – коэффициенты.

Величина стресс-индекса определяется коэффициентом b. Стресс-индекс, равный 1,01 отражает линейную форму восходящей части кривой давления. Если стресс-индекс меньше 1,01, то он отражает выпуклую форму восходящей части кривой давления, больше 1,01 – вогнутую форму. Считается, что линейная форма соответствует равномерному распределению воздуха в альвеолах. Вогнутая форма кривой появляется вследствие того, что часть альвеол перерастягивается в конце механического вдоха. Выпуклая форма отражает процесс расправления альвеол в начале механического вдоха (рис. 10.15). На основании подобных теоретических позиций считается возможным подобрать оптимальное сочетание РЕЕР и давления вдоха путем оценки формы восходящей части кривой давления и расчета стресс-индекса.

10.1.4. Диагностика непреднамеренного ауто-РЕЕР

Анализ кривых Paw и Pes позволяет выявить наличие ауто-РЕЕР по значительной амплитуде волны пищеводного давления и большой задержке триггирования вдоха, что мы рассмотрим подробнее при обсуждении особенностей респираторной поддержки пациентов с острой бронхообструкцией и ХОБЛ.